skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kvasovs, Nikita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The synthetic utility of aryl radicals has been established in the last century, however, their broad applications were hampered by ineffective generation methods. It was in the last decade, that a rapid development of various redox systems took place, thus triggering a renaissance of aryl radical chemistry. This tutorial review focuses on the start-of-the-art methods for generation of aryl radicals. Primarily, various light-induced systems, including photoredox catalysis, visible light transition metal catalysis, and chemistry of electron donor–acceptor complexes, are reviewed. The main current precursors of aryl radicals are evaluated together with the selected examples of their modern applications. 
    more » « less
  2. null (Ed.)